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Abstract—Semantic communication (SC) aims to convey the
meaning of data instead of focusing on its bit-by-bit reconstruc-
tion. SC finds applications in beyond 5G and 6G networks for
artificial intelligence-empowered multimedia content delivery. In
this paper, we propose a novel semantic-aided autoencoder-based
image transmission system that leverages semantic information in
the form of the segmentation map of an image. We demonstrate
up to 23% and 18% improvement (in terms of mean square
error and peak signal-to-noise ratio, respectively) in the quality
of the received image with only 2% extra bandwidth over a
traditional autoencoder-based image transmission system. The
study also explores channel coding strategies for our proposed
system. We focus on the intrinsically robust nature of semantic
data, as compared to traditional data, to design low-density parity
check code, Hamming code, and polar code-based unequal error
protection (UEP) schemes. Comparative evaluations between
UEP and equal error protection schemes show that while both
approaches yield similar performance, UEP schemes are more
efficient.

Index Terms—Autoencoder, image segmentation, low-density
parity check (LDPC) codes, multimedia transmission system,
polar codes, semantic communication (SC), unequal error pro-
tection (UEP).

I. INTRODUCTION

As we progress into beyond 5G and 6G networks, we
find that there is a need to view traditional communication
systems from a new perspective, focusing on semantics. The
objective of semantic communication (SC) is to convey the
semantic meaning of the message by sharing a common, prior
knowledge between the sender and the receiver [1]. Enhancing
traditional systems using SC is a necessary step towards
achieving fully intelligent networks. An intermediate step
towards moving entirely to SC is semantic-aided communi-
cation. Semantic-aided communication represents a paradigm
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that exploits the noise resilience of semantic content to achieve
reduced-loss communication links. A comprehensive exami-
nation of the principles of SC for diverse information sources
such as images, text, and video is given in [2]. The authors in
[3] develop a semantic image transmission system. The scope
of their work is restrictive, as they use a generative adversarial
network (GAN) to regenerate the image at the receiver solely
from its segmentation map, omitting other image details. The
concept of deep joint source-channel coding (DeepJSCC) for
image transmission is presented in [4]. Authors in [5] present a
method to enhance wireless image transmission using domain-
specific semantic information. Both studies propose end-to-
end wireless systems using deep neural networks to directly
map image bits to channel input symbols, ignoring traditional
physical layer channel coding and modulation techniques.

Previous works use purely SC systems, disregarding syn-
tactic (traditional) data. In real-world applications, blending
SC with traditional communication yields a heterogeneous
setting where both semantic and syntactic data coexist, offer-
ing combined advantages. These two types of data inherently
embody varying degrees of significance and error tolerance.
Hence, it would be more efficient to implement unequal error
protection (UEP) [6] schemes for the two data types rather
than assuming uniform information importance as in a con-
ventional communication framework. In our study, we employ
the concept of UEP at the physical layer in the context of
semantic-aided image transmission. In our proposed approach,
the segmentation map of the image is used to improve image
quality at the receiver, reconstructed from the latent map of
the image using an autoencoder. The primary contributions of
this paper can be summarized as follows:

• We propose a semantic-aided autoencoder-based image



Fig. 1: Architecture of traditional and proposed semantic-aided autoencoders (Training phase)

transmission system and compare its performance with
a traditional autoencoder-based system. We demonstrate
the advantages of our proposed system in terms of multi-
ple evaluation metrics (mean square error (MSE), peak
signal-to-noise ratio (PSNR), and structural similarity
index measure (SSIM)).

• For our proposed semantic-aided system, we use UEP
channel coding schemes and compare their performance
with equal error protection (EEP) schemes. The UEP
schemes are implemented using two methods: (1) By
using low-density parity check (LDPC) code for the latent
map and a simple Hamming code for the segmentation
map; (2) By utilizing the intrinsic UEP property of polar
codes.

II. SYSTEM MODEL

Our proposed semantic-aided autoencoder-based image
transmission system operates in two phases, the training phase
and the communication phase.

A. Training Phase

In the training phase, the autoencoder learns to create a
latent map from the original image and then reconstruct the
image from this latent map. The encoder generates the latent
map, and the reconstruction is done by the decoder. The
training phase of the traditional approach is shown in Fig.
1. The autoencoder is implemented as a convolutional neural
network. The encoder E1 consists of three Conv2D layers,
while the decoder D1 consists of three ConvTranspose2D
layers. Fig. 1 also shows the architecture of our proposed
semantic-aided autoencoder. The encoder E2 has the same
architecture as the encoder E1 of the traditional approach. The
architecture of the decoder D2 is different from that of decoder
D1. In our approach, apart from the latent map, the decoder
is provided with additional semantic information in the form
of the segmentation map of the image. The segmentation map
is resized and concatenated as an extra channel to the latent
map. The decoder D2 takes this concatenated latent map and

reconstructs the original image using three ConvTranspose2D
layers. All the layers in the encoders E1 and E2 have a ReLU
activation function. For decoders D1 and D2, all layers except
the last one, use ReLU activation function, while the final
layer employs a sigmoid activation function to produce the
normalized pixel values of the reconstructed image.

B. Communication Phase

The communication phases of the traditional approach and
of our semantic-aided approach are shown in Fig. 2. In this
phase, the trained encoder (E1 for the traditional approach and
E2 for the semantic-aided approach) is placed at the sender,
and the trained decoder (D1 for the traditional approach
and D2 for the semantic-aided approach) is placed at the
receiver of the communication system. In our semantic-aided
system, the trained encoder-decoder pair serves as the common
knowledge base between the transmitter and the receiver.

When transmitting a new image, the sender employs the
trained encoder to generate the latent map of the image. This
latent map undergoes channel coding and modulation. It is
then transmitted over a noisy communication channel. At the
receiver, a noisy version of the latent map is recovered after
channel decoding and demodulation. The decoder uses the
noisy version of the latent map to reconstruct the image. Due
to noise in the latent data, the quality of the reconstructed
image is lower as compared to the original image. In our
semantic-aided approach, the difference is that the sender
concatenates the generated latent map with the segmentation
map of the image. This combined latent and segmentation map
then undergoes channel coding and modulation. The decoder
at the receiver uses the received concatenated latent map as
its input to reconstruct the original image. The segmentation
map is extra semantic information that is used for improving
the quality of the reconstructed image in our approach. While
transmitting an image, the latent map values are encoded using
an 8-bit representation while the segmentation map values
are encoded using a 4-bit representation. In our experiments,
we find that using a lower-resolution representation for the



Fig. 2: Communication phase of traditional and proposed semantic-aided autoencoder-based image transmission systems

Fig. 3: Polar code-based UEP scheme

semantic data does not lead to a loss in the quality of the
reconstructed image. This is because of the intrinsically greater
resilience of semantic data to channel noise [1].

III. EQUAL AND UNEQUAL ERROR PROTECTION

In the communication phase of our semantic-aided image
transmission system, both the latent and the segmentation map
bits traverse a noisy channel, leading to degradation in the
quality of the reconstructed image. To negate the effect of
channel noise, we use channel coding. In our experiments,
we use Hamming codes, LDPC codes, and Polar codes [7].
LDPC codes and Polar codes are being used in the 5G
wireless communication protocol [8]. In wireless commu-
nication, the quality of the received image can deteriorate
drastically when the signal-to-noise ratio (SNR) drops to low
values, necessitating the use of error correction codes. It is
to be noted that the significance of the latent map data and
that of the semantic segmentation map data are different.
The receiver primarily needs the latent map to reconstruct
the original image, whereas the semantic segmentation map
serves as supplementary information. Additionally, semantic
data exhibits greater resilience to channel noise compared to
traditional data [1]. So, in this heterogeneous data scenario,
we propose UEP channel coding schemes. We give more
protection to the latent map values and less protection to
the segmentation map values. Error correction codes (ECCs)

are represented as (K,N) codes, where K is the number of
message bits and N is the number of bits in the codeword
after the message is encoded. In our implementation, we use
(32400, 64800) LDPC codes, (1013, 1023) Hamming codes,
and (582, 1024) polar codes.
EEP: The first EEP scheme is the Full LDPC scheme.
Here, the latent map bits and the segmentation map bits are
separately encoded using LDPC codes. In the polar code-based
EEP scheme, called Polar EEP, the two different types of
data bits are encoded separately using polar codes. The EEP
schemes protect both the latent and segmentation map data
identically.
UEP: The LDPC code-based UEP scheme is called the
LDPC+Hamming scheme. In this scheme, the latent map bits
are encoded using LDPC codes. For the segmentation map
bits, we use a much simpler Hamming code. Using a simpler
channel coding scheme leads to lower computation complexity.
Also, a (1013, 1023) Hamming code adds less number of par-
ity bits to the message bits, as compared to a (32400, 64800)
LDPC code, reducing the total number of bits that need to be
transmitted. Polar codes have an inherent UEP property due
to the underlying process of channel polarization. Different
bits of the polar code codeword suffer from different degrees
of error when transmitted through the same channel [9]. We
utilize this property to provide differential error protection to
the latent map and the segmentation map bits in the Polar
UEP scheme. As shown in Fig. 3, we combine the latent map
bits and the segmentation map bits in the same codeword. The
latent map bits are assigned to the more protected bit positions
of the codeword, while the segmentation map bits are assigned
to the less protected bit positions. This combined codeword is
then transmitted over a noisy channel.

IV. EXPERIMENTAL SETUP

Dataset: We use the COCO-Stuff dataset [10] for our ex-
periments. This dataset has previously been used to design
and evaluate a semantic image transmission system [3]. The
dataset contains images of different objects along with their
segmentation maps. Both the traditional and the semantic-
aided autoencoders are trained on a truncated version of



the dataset containing 10, 000 images. The quality of the
reconstructed image in the communication phase is compared
over a test dataset of 100 images. Both the autoencoders are
trained for 50 epochs, with MSE loss as the optimization
criterion. For our experiments, we resize the images to a
dimension of 320×240 with 3 channels. We choose the latent
map size to be 40× 30 with 48 channels.
Setup: The autoencoder models are implemented using Python
3 and the Pytorch (version 2.0.1+cu118) framework. All the
experiments for the training and communication phases are
done on a machine with an NVIDIA GeForce GTX 1080 Ti
GPU, an Intel Xeon E5-1650 v3 CPU (32 GB RAM), and the
Windows 10 Pro operating system. The noisy communication
channel and the channel coding and modulation schemes are
implemented in Matlab (version R2023a). In our experiments,
we use the quadrature phase-shift keying (QPSK) modulation
scheme. Polar codes are implemented using the Matlab 5G
Toolbox, while LDPC codes, Hamming codes, and QPSK
modulation are implemented using the Matlab Communication
Toolbox.

V. RESULTS

A. Performance Metrics

The performance of the traditional and our proposed
semantic-aided approaches with various EEP and UEP channel
coding schemes are evaluated using three metrics: MSE,
PSNR, and SSIM.

The MSE metric measures the average of the squared pixel-
wise differences between the corresponding pixels of two
images. It is given by

MSE =
1

NMC

N−1∑
i=0

M−1∑
j=0

C−1∑
c=0

[I(i, j, c)− Î(i, j, c)]2 , (1)

where N is the image height, M is the image width, C is
the number of colour channels (C = 3 for RGB), I(i, j, c)
is the pixel value of colour channel c of the original image
at position (i, j), and Î(i, j, c) is the pixel value of colour
channel c of the reconstructed image at position (i, j).

The PSNR metric quantifies the signal-to-noise relationship,
which affects the accuracy of signal representation, and is
closely linked to the MSE metric. It is given by

PSNR = 10 · log10
(

MAX2

MSE

)
, (2)

where MAX represents the maximum possible value of a pixel.
In our experiments, all the pixel values are mapped to a range
of [0, 1]. In general, a higher PSNR value suggests that the
reconstructed image possesses superior quality.

The SSIM metric, introduced by Wang et al. [11], seeks to
emulate human visual system-based image quality perception.
It is given by

SSIM(I, Î) =
(2µIµÎ + C1)(2σIÎ + C2)

(µ2
I + µ2

Î
+ C1)(σ2

I + σ2
Î
+ C2)

, (3)

where µI is the average pixel value of the original image
I , µÎ is the average pixel value of the reconstructed image

Î , σ2
I is the variance of pixel values of image I , σ2

Î
is the

variance of pixel values of image Î , σIÎ is the covariance
between pixel values of images I and Î . The SSIM value
lies in the range of [−1, 1]. A value closer to 1 indicates
higher structural similarity between the two images, and a
value closer to −1 suggests significant dissimilarity. Unlike
MSE and PSNR, which rely on absolute error measurements,
SSIM provides a comparative evaluation of image quality.

B. Experimental Results

1) Comparison of Traditional and Proposed Semantic-
Aided Approaches: We perform experiments for a noisy
channel that adds Additive White Gaussian noise (AWGN)
to the transmitted values at SNR values in the range of −10
dB to 10 dB. In the first experiment, we compare the quality
of the reconstructed image for the traditional and our proposed
semantic-aided autoencoders. The comparison is done for the
ideal case where we assume that there is no noise in the
channel and for a noisy channel at different SNR values. In
these experiments, we do not use any channel coding scheme
for error correction. The results for this experiment are shown
in Fig. 4. In the graph for the MSE metric (Fig. 4a), we
see that in the ideal case, labeled as Traditional (ideal) and
Semantic-Aided (ideal), the MSE between the original image
and the reconstructed image is very close to 0. This shows
that when the decoder receives a latent map with no errors,
it is able to generate a good reconstruction of the original
image for both the traditional and our proposed semantic-aided
approaches. The difference in performance between these two
approaches becomes evident when we transmit over a noisy
channel. The MSE in the presence of noise is shown using
Traditional (noise) and Semantic-Aided (noise). Transmitting
the segmentation map of the image in our proposed approach
improves the MSE of the received image by up to 23%
with only a 2% increase in the bandwidth compared to the
traditional approach. The gap in performance is greater at
lower SNR values, and the MSE values converge as the SNR
improves. For the PSNR graph (Fig. 4b), we observe a similar
improvement for the semantic-aided approach with up to 18%
improvement at low SNR values. Moreover, in the ideal case,
the PSNR for the semantic-aided autoencoder (66.9 dB) is
better than that of the traditional one (66.13 dB). In Fig. 4c
we see that the SSIM for the semantic-aided approach is better
than that for the traditional approach. For SNR below 0 dB,
the SSIM value is less than 0 and there is no visible similarity
between the original and the reconstructed image. Hence, these
values are not plotted in the SSIM graph.

We visually compare the quality of the reconstructed images
for the ideal case and with noise at different SNR values. The
original and the reconstructed images for the traditional and
the proposed semantic-aided approaches are shown in Fig. 5.
It is clearly evident from the figure that the semantic-aided
approach is able to generate a better reconstruction of the
original image compared to the traditional approach. We see
that even at SNR = 1 dB, the shape of the airplane is already
slightly visible in the semantic-aided reconstruction, but in the



(a) Mean square error (MSE) (b) Peak signal-to-noise ratio (PSNR) (c) Structural similarity index measure (SSIM)

Fig. 4: Comparison of traditional and proposed semantic-aided image transmission systems

Fig. 5: Visualization of images reconstructed by traditional and proposed semantic-aided approaches

traditional reconstruction, it is not visible at all. Similarly, at
SNR = 5 dB and SNR = 7 dB, we have a much clearer
reconstructed image using the semantic-aided approach. This
happens because of the extra semantic information provided to
the decoder in the form of the segmentation map of the image.
It is important to note that this improvement is obtained with
an equal number of training epochs for both the autoencoders.

2) Effect of Adding LDPC Channel Coding to the Semantic-
Aided Approach: In the second experiment, we add LDPC
channel coding to the semantic-aided approach when transmit-
ting over a noisy channel. The results of this experiment are
shown in Fig. 6. In these graphs, we compare the quality of the
reconstructed image for three different scenarios: (1) ideal case
(no noise), (2) noisy channel with AWGN noise but no channel
coding, and (3) noisy channel with LDPC channel coding for
both the latent and the segmentation map bits. We see in Fig.
6a that when we add LDPC channel coding, the MSE improves
sharply compared to the scenario without LDPC coding in the
presence of channel noise. At SNR ≥ 1 dB, the quality of the
reconstructed image improves and becomes equal to the image
quality in the ideal case. A similar trend is observed for PSNR
and SSIM, as seen in Fig. 6b and Fig. 6c, respectively. These
results show the effectiveness of channel coding to negate the

adverse effects of a noisy communication channel.
3) Comparison of EEP and UEP Channel Coding Schemes:

In the third experiment, we compare the performance of EEP
and UEP channel coding schemes. These experiments are done
for a noisy channel with AWGN noise having SNR in the
range of 0 dB to 10 dB. The results of these experiments are
shown in Fig. 7. In the result graphs, we see that the MSE,
PSNR, and SSIM for Full LDPC coding and LDPC+Hamming
coding are the same. The graphs overlap with each other. This
shows that even when we provide less error protection to the
segmentation map bits using a simple Hamming code, there
is no degradation in the quality of the reconstructed image.
This observation allows us to replace LDPC codes with much
simpler Hamming codes for the segmentation map bits and
reduces the computational complexity of channel coding. The
result graphs also compare the performance of the Polar EEP
and the Polar UEP schemes. The MSE graph in Fig. 7a shows
that there is no degradation in the MSE of the reconstructed
image in the Polar UEP scheme as compared to the Polar EEP
scheme. The PSNR and SSIM values are also very close to
each other over the entire SNR range. There is no degradation
in the quality of the received image. An important observation
from the three graphs in Fig. 7 is that LDPC codes have a



(a) Mean square error (MSE) (b) Peak signal-to-noise ratio (PSNR) (c) Structural similarity index measure (SSIM)

Fig. 6: Effect of adding LDPC channel coding to the proposed semantic-aided image transmission system

(a) Mean square error (MSE) (b) Peak signal-to-noise ratio (PSNR) (c) Structual Similarity index measure (SSIM)

Fig. 7: Comparison of equal and unequal error protection channel coding schemes

better error correction capability than polar codes and lead to
a more faithful reconstruction of the image at the receiver.

VI. CONCLUSION

In this paper, we propose a semantic-aided autoencoder-
based image transmission system that has up to 23% improve-
ment (in terms of MSE) and 18% improvement (in terms of
PSNR) in the quality of the received image with only 2%
extra bandwidth requirement over a traditional autoencoder-
based system. Furthermore, through a comparative analysis
of EEP and UEP channel coding schemes for the semantic
and syntactic data, we find that the UEP schemes offer
greater efficiency without any degradation in the quality of the
received image. Such semantic-aided architectures are stepping
stones in the transition from traditional to purely SC systems.
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